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1. Introduction

Let P be any point inside a triangle ABC. The cevians through P divide 4ABC
into six smaller triangles, all having one vertex at P . The areas of these triangles
will be named K1 through K6 as shown in Figure 1. The area of 4ABC will be
named K.

Figure 1. numbering of the six areas

1This article is distributed under the terms of the Creative Commons Attribution License
which permits any use, distribution, and reproduction in any medium, provided the original
author(s) and the source are credited.
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In 1835, a wooden tablet was hung by Sugita Naotake in the Izanagi shrine in the
Mie Prefecture of Japan that asked for a formula for K in terms of K1, K2, and
K3. See [1] and [2, p. 46]. The surprising answer is

K =
K2(K1 + K2)(K1 + K2 + K3)

K2(K1 + K2 + K3)−K3(K1 + K2)
,

or equivalently,

K =
K2(K1 + K2)(K1 + K2 + K3)

K2(K1 + K2)−K1K3

.

We will call this Naotake’s Formula. Proofs can be found in [5] and [3, pp. 210-
212].

In this paper, we will find other relationships between these areas.

First, we mention two known results.

Theorem 1.1. For any point P inside 4ABC, K1K3K5 = K2K4K6.

A proof can be found in [6, Theorem 7.4].

Theorem 1.2. For any point P inside 4ABC,

1

K1

+
1

K3

+
1

K5

=
1

K2

+
1

K4

+
1

K6

.

A proof can be found in [4, p. 43].

We now give some new results. Specifically, we will find formulas expressing each
of K4, K5, and K6 in terms of K1, K2, and K3. We will give the results first. Then
we will explain how we empirically came up with these results using a computer
algebra system. Finally, we will explain how we proved the results.

2. The Results

We found the following results.

Theorem 2.1. For any point P inside 4ABC,

K4 =
K1K

2
3

K2(K1 + K2)−K1K3

,

K5 =
K1K2K

2
3(K1 + K2)

(K2(K1 + K2)−K1K3)(K2(K1 + K2 + K3)−K1K3)
,

K6 =
K1K3(K1 + K2)

K2(K1 + K2 + K3)−K1K3

.

Note that K5 = K2K4K6/(K1K3) which agrees with Theorem 1.1.

3. How We Discovered the Results

Let us start by seeing how we discovered the formula for K4.

Let AB = c, BC = a, and CA = b. Let the cevians through P be AD, BE, and
CF . The twelve segments formed by them with each other and the sides of the
triangle have lengths as shown in Figure 2.
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Figure 2. lengths of the twelve segments

We want to express each of the Ki in terms of a1, a2, b1, b2, c1, c2, and K. First,
we will express e, f , g, h, j, and k in terms of a1, a2, b1, b2, c1, and c2.

The following result was stated by van Aubel in 1882 [7] and is often called Van
Aubel’s Theorem for Triangles [8].

Lemma 3.1 (Van Aubel’s Theorem for Triangles). Let P be any point inside
4ABC and let the cevians through P be AD, BE, and CF (Figure 3). Then

AF

FB
+

AE

EC
=

AP

PD
.

Figure 3.

An immediate consequence of Van Aubel’s Theorem for Triangles is the following
lemma.

Lemma 3.2. Using the notation of Figure 2, we have the following equations.

e = f

(
c2
c1

+
a1
a2

)
, g = h

(
b1
b2

+
a2
a1

)
, k = j

(
c1
c2

+
b2
b1

)
.

Lemma 3.3. The Ki can be expressed as multiples of K1 using the lengths shown
in Figure 2. In particular,

K2 =

(
a2
a1

)
K1, K3 =

(
(a1 + a2)f

a1e

)
K1, K4 =

(
(a1 + a2)b2f

a1b1e

)
K1,

K5 =

(
(a1 + a2)(b1 + b2)fh

a1b1eg

)
K1, K6 =

(
(a1 + a2)(b1 + b2)c2fh

a1b1c1eg

)
K1.
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Proof. If two triangles have the same altitude, then their areas are proportional
to their bases. This gives the following proportions.

K2

K1

=
a2
a1

,
K3

K1 + K2

=
f

e
,

K4

K3

=
b2
b1
,

K5

K3 + K4

=
h

g
,

K6

K5

=
c2
c1
.

Some algebraic manipulation (using Mathematica®) then gives us the desired
equations. �

If we take Naotake’s Formula,

K =
K2(K1 + K2)(K1 + K2 + K3)

K2(K1 + K2 + K3)−K3(K1 + K2)
,

and multiply both sides by the denominator and then bring all terms to the left
side, we get the following relationship between K1, K2, K3, and K.

KK1K2 −K2
1K2 + KK2

2 − 2K1K
2
2 −K3

2 −KK1K3 −K1K2K3 −K2
2K3 = 0

We observe that each term is of degree 3. It is expected that each term would
have the same degree because the formula should remain the same if the triangle
is scaled by a constant factor. So we note that this relationship is a homogeneous
polynomial of degree 3. We also note that the coefficients are all small integers.
This suggests how we could search for a formula relating K1, K2, K3, and K4.

Suppose we thought that the degree of the relationship is 2. We could then
generate a list of all possible terms of degree 2 in four variables. The list would be

{K2
1 , K2

2 , K2
3 , K2

4 , K1K2, K1K3, K1K4, K2K3, K2K4, K3K4}.

Then we pick some fixed triangle with three random sides. We don’t want a
special triangle like an isosceles triangle or a right triangle. We pick numerical
values of a1, a2, b1, b2, and c1 for this triangle and pick c2 so that Ceva’s Theorem
is satisfied, i.e. a1b1c1 = a2b2c2. We then use these values to find the values of K1,
K2, K3 and K4 using Lemmas 3.2 and 3.3. We get expressions of the form A1K1,
A2K1, A3K1 and A4K1, where A1, A2, A3, and A4 are strictly numerical. We
can cancel the common factor of K1 since the desired formula should not change
when the triangle is scaled. We then look for a linear combination of A1, A2,
A3 and A4 with small integer coefficients whose value is 0. The Mathematica®

function FindIntegerNullVector can be used to possibly find such an integer
linear combination. (This function uses a variant of the Lenstra-Lenstra-Lovasz
lattice reduction algorithm.)

If a relationship, f(A1, A2, A3, A4) = 0 is found, then this is a good conjecture
for what the relationship between K1, K2, K3, and K4 would be. We could also
solve the polynomial equation f(K1, K2, K3, K4) = 0 for K4 to get a conjectured
formula for K4 in terms of K1, K2, and K3.

Using the FindIntegerNullVector function, no such linear combination was
found.

We then guessed that the relationship might have degree 3. There are 20 terms
of degree 3 in 4 variables. We repeated the procedure using our chosen numerical
triangle and FindIntegerNullVector came up with the integer homogeneous
linear combination

A1A2A4 − A1A3A4 − A1A
2
3 + A2

2A4 = 0.
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Solving for A4 and changing the A’s to K’s then suggested that the formula we
were looking for might be

K4 =
K1K

2
3

K2(K1 + K2)−K1K3

.

At this point, this is just a conjecture because the formula might only be valid
for the particular numerical triangle we tested with, or the formula might only
be accurate to the precision we used to perform the calculation. In order to
mitigate erroneous results, we did all calculations to 25 decimal places of precision.
Nevertheless, the formula found might still be an approximation. Before claiming
the result as a theorem, we have to prove that the formula holds for all possible
triangles and all positions of point P within that triangle.

4. How We Proved the Results

To prove the conjectured formula for K4,

K4 =
K1K

2
3

K2(K1 + K2)−K1K3

,

we proceed as follows. We form the symbolic expression

S = K4 −
K1K

2
3

K2(K1 + K2)−K1K3

.

We replace each Ki by the corresponding expression in terms of the symbolic
variables a1, a2, b1, b2, and c1 given by Lemma 3.3. Canceling out the common
factor K1, and after some simplification, we get

S ′ =
(a1 + a2)(a1b1f + a1b2f − a2b2e)f

a1b1e(a1f − a2e)
.

Since these variables are arbitrary, they can generate all possible configurations,
so it suffices to prove that S ′ is identically 0. To simplify S ′, we use the first
equation of Lemma 3.2 to remove variable f . After simplification, we get

S ′ =
(a1 + a2)c1(a2b2c2 − a1b1c1)

a1b1c2(a1c1 + a2c2)
.

Then it is clear that S ′ = 0 by Ceva’s Theorem. This proves the formula for K4.

The formulas for K5 and K6 in terms of K1, K2, and K3 were found and proved
in the same manner and the details are omitted. The formula for K5 could also
be found by using Theorem 1.1 together with the formulas for K4 and K6.

The Wasan geometers did not have computers to help them with computations.
A traditional proof of Naotake’s Formula can be found in [3, pp. 210-212] and
uses only elementary geometry. However, we do not know how Naotake came up
with the formula in the first place. It certainly wasn’t by the method used in this
paper.

Open Question. Is there a simpler method for discovering the formulas given in
Theorem 2.1 without using computers?
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5. Expressing K in terms of K1, K3, and K5

Naotake’s Formula expresses K in terms of K1, K2, and K3. It would be natural
to look for formulas for K in terms of other triples of the Ki.

With the compute power available to me, the method described previously was
unable to find a formula for K in terms of K1, K3, and K5. However, we can find
the relationship between K1, K3, K5, and K, as follows. We can solve Naotake’s
formula for K2, thereby expressing K2 as a function of K1, K3, and K5. Then we
substitute this expression for K2 into the formula for K5 given by Theorem 2.1.
This would give us a relationship between K1, K3, K5, and K.

However, solving Naotake’s formula for K2 gives an expression involving radicals.
We can avoid radicals by using the Mathematica® function Eliminate. Elimi-
nating K2 from the two equations gives the following result.

Theorem 5.1 (K in terms of K1, K3, and K5). The areas K1, K3, K5, and K
satisfy the polynomial identity

c4K
4 − c3K

3 − c2K
2 − c1K − c0 = 0

where

c4 = s3,

c3 = s1s3,

c2 = 4s2s3 + e1,

c1 = 2s23 + s1s2s3 + 2s3e2,

c0 = 2s23s1,

and where

s1 = K1 + K3 + K5,

s2 = K1K3 + K3K5 + K5K1,

s3 = K1K3K5,

e1 = K2
1K

3
3 + K2

3K
3
5 + K2

5K
3
1 ,

e2 = K1K
2
3 + K3K

2
5 + K5K

2
1 .

In theory, we could solve this equation for K using the quartic formula. This
would give an explicit formula for K in terms of K1, K3, and K5, but the resulting
formula would contain a lot of radicals.

Equations relating K and other triples of the Ki can be found in a similar manner.
We get the following.

Theorem 5.2 (K in terms of K1, K2, and K4). For any point P inside 4ABC,

K =
(K1 + K2)

2K1K2

×
(
K1(2K2 + K4) +

√
K1K4(4K1K2 + K1K4 + 4K2

2)

)
.

Theorem 5.3 (K in terms of K1, K3, and K6). For any point P inside 4ABC,

K =
K1

2K6

× A + B
√
C

K2
1K3 −K6(K2

1 + 2K1K3 −K3K6)
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where

A = K2
1K

2
3 + K6

(
K2

3(K6 − 2K1)−K1K6(K1 + K6)−K3K6(K1 + 3K6)
)
,

B = K1(K3 −K6)−K6(K3 + K6),

C = K2
1(K3 + K6)

2 + K2
3K

2
6 + 2K1K3K6(3K6 −K3).
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